Clik here to view.

Recent scientific advances in the field of genome editing, which enables precise modifications to DNA, have greatly increased the potential to treat genetic diseases. Despite revolutionary progress in this area, treatment options remain limited. Several scientific challenges must be addressed before gene editing can be widely used in the clinic. For example, gene editing tools may cut in unintended areas in addition to the target site, and more research is necessary to understand how these errors affect patients.
Another key challenge is that many organs remain difficult to reach with gene therapies because we do not have adequate ways to deliver gene editing tools to all cells. While efficient delivery technologies exist for some targets, like liver cells, novel and specialized delivery methods designed for specific cell types and locations in the body are needed to ensure genome editing tools can reach sufficient numbers and types of somatic cells to modify DNA safely and effectively. Somatic cell gene therapies target non-reproductive cells, so the changes only affect the person who receives the gene therapy and are not passed down generation to generation.
To address these challenges, NIH launched the TARGETED (Targeted Genome Editor Delivery) Challenge, a multi-phase competition funded through the NIH Common Fund as part of the NIH Somatic Cell Genome Editing (SCGE) Program. SCGE was funded in 2018 to improve the efficacy and specificity of genome editing to help reduce the burden of common and rare diseases caused by genetic changes.
As part of the TARGETED Challenge, research teams will develop technologies for delivering genome editors to somatic cells. NIH will award up to $6 million in prize money across the challenge.
The Challenge is focused on finding delivery systems that can be programmed with biological or chemical tags that correspond to specific target cells and tissues. These tags would direct the delivery systems and the genome editing therapies to the target cells or tissues—like mail being delivered to different zip codes. Such programmable delivery systems would improve gene editing efficacy by targeting diseases at their source and would enhance safety by reducing undesired impacts on other tissues or cells. Ultimately, the development of safe and effective programmable delivery technologies for genome editors that are applicable to multiple diseases would help advance the application of gene editing therapies into the clinic.
The Challenge also is interested in gene editing delivery technologies that can cross the blood-brain barrier (BBB). The BBB protects the brain by blocking harmful substances from entering the fluid of the central nervous system. Unfortunately, it also blocks the uptake of many therapeutics, hindering treatments for brain diseases. While viruses are one of the few approaches that can be used as delivery systems to cross the BBB, they are expensive and difficult to make. Therefore, there is a pressing need for effective non-viral technologies to deliver genome editing machinery across the BBB to a substantial proportion of clinically relevant brain cell types. Such technologies could have broad implications for the treatment of many neurogenetic diseases.
Solutions to both target areas would not only provide proof-of-concept for the delivery of genome editing therapeutics, but they could be adapted to deliver other types of therapies to treat common and rare diseases in general.
The first phase of the Challenge began on May 15, 2023 and will run until October 5, 2023. More information about the Challenge is available on the TARGETED Genome Editor Delivery Challenge website.
Links:
“National Institutes of Health launch TARGETED Challenge,” NIH Common Fund, May 15, 2023
TARGETED Genome Editor Delivery Challenge (NIH Common Fund)
Somatic Cell Genome Editing Program (NIH Common Fund)
NIH Support: The SCGE program is led by the NIH Common Fund, the National Center for Advancing Translational Sciences (NCATS), and the National Institute of Neurological Disorders and Stroke (NINDS). The Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative and the National Heart, Lung, and Blood Institute (NHLBI) are also contributors to this Challenge.